
UNCLASSIFIED

File Delivery with UDP and an Unreliable Network

Katelyn Atkinson

Team Monarch

Timothy Reidy

Ashley Yu

Alicia Unterreiner

Spencer Scamman

Ian Paap-Gray

July 25, 2022

UNCLASSIFIED

UNCLASSIFIED

Executive Summary

The Virtual Institutes for Cyber and Electromagnetic Spectrum Research and Employ

(VICEROY) assigns Team Monarch, a team of six interns, a challenge problem related to

communication across a network. The team must deliver a file with the user datagram protocol

(UDP) across an unreliable network. From the client, we must send a file given to us by Mr.

Allen, and deliver the file to the server. In our solution, we must utilize the IP addresses

associated with 10.65.97.0/24 on the Ubuntu VICEROY virtual machine (VM). We must also

use ports 2001 and 2002. The file on the server must match the file on the client to demonstrate

delivery uncompromised by packet loss in the network.

We assume access to the team VM and virtual private network (VPN) as set up by Mr. Allen and

the graduate assistants. We also assume delivery of our file occurs without a constraint on time.

We assume the size of the files transferred across the network fall within the memory capacity of

the system’s hardware. Ports 2001 and 2002 we assume to exist as open and available for use.

We base our solution on a TCP model for communication and finalize our solution with UDP.

We access the team VM in the ubuntu@viceroy-01.vcry environment and start a connection on

the VICEROY VPN. We then secure the “example.data” file from Mr. Allen’s lecture folder. To

format the packets we send over the network, we use an index in front of the packet’s data. Inside

the VM, we use Visual Studio Code to create python scripts for a client and server, each hosted

across two computers. Both utilize Python methods that allow their sockets to send and receive.

We use acknowledgements from client to server to overcome the issue of packet loss. We finish

with the creation of a file which contains packets in the order and quality of the original.

UNCLASSIFIED 1

UNCLASSIFIED

1. Problem Statement

The Virtual Institutes for Cyber and Electromagnetic Spectrum Research and Employ

(VICEROY) assign six interns to Team Monarch. As guest-lecturer, Mr. Samuel Allen provides a

challenge problem to our team. The challenge problem requires the team to deliver a file via a

transport protocol known as the user datagram protocol (UDP) over the Internet. We must

overcome the limitations of UDP, which include loss of packets and failure of a file’s delivery, to

produce a file transferred without errors.

The network used to deliver the file hosts a foundation prone to errors, such as a packet dropped

and not delivered to the server or client. Our team must provide two deliverables to complete the

challenge problem. They consist of this document which specifies the steps to our solution and a

demonstration to show delivery of the file. The file follows the format or may consist of the the

“example.data” file Mr. Allen provides in his lecture. Delivery of the file must occur in packets

as designed by UDP. Communication to the server must end with the packets sorted in order and

with the quality they contained before their transfer across the network.

The team must build and implement a script in Python for one client and one server on the

network. The client must exist on a device separate from the device which hosts the server. The

challenge problem’s instructions mandate us to utilize 10.65.97.xxx as the server’s IP. The secure

shell (SSH) Mr. Allen deploys as ubuntu@viceroy-01.vcry limits our addresses to those within

the 10.65.97.0/24 interface. The challenge problem also specifies communication must exist on

the ports 2001 and 2002. Resources we use must include the VICEROY Ubuntu virtual machine,

as well as the VPN used by VICEROY. The file transferred we must show on the VM.

UNCLASSIFIED 2

UNCLASSIFIED

2. Background

The previous chapter outlines the problem statement and the need for a solution which uses UDP

to deliver a file without errors. In this chapter, we detail the background and information relevant

to comprehension and application of the solution.

2.1 Networks

Networks consist of two or more computers connected together to share resources [1]. In this

section we cover terminology used to describe networks and the protocols used to transport

information.

2.1.1 Terminology

To establish a network, we need a client, server, IP addresses, transport protocols, packets, ports,

and sockets. A client interfaces with the server to receive and send transmissions [1]. Managed

by administrators, servers accept and respond to requests from clients [1]. Both server and client

match to Internet protocol (IP) addresses [1]. IP addresses exist as a string of numbers meant to

identify a computer that communicates across a network [1]. The IP format x.xx.xx.x/# contains

a “#” to represent the bits that identify the network and the rest of the bits left to represent the

number of hosts on the network [1]. Messages sent across the network come in the form of

packets, which exist as pieces segmented from the original [1]. Transport protocols describe the

transmission of packets between clients and servers, such as UDP [2]. Part of the operating

system, a port exists at the start or end of a network’s connection and helps sort traffic over a

network [2]. A socket exists in Python programs as one endpoint in the communication between

programs run on a network [3].

UNCLASSIFIED 3

UNCLASSIFIED

2.1.2 TCP vs UDP

The transmission control protocol (TCP) ensures packets arrive at their destinations and maintain

a connection without the loss of packets [2]. The user datagram protocol (UDP) checks distortion

of packets, but allows packets to drop without retransmission [2]. While TCP retransmits

packets, the protocol maintains slower transmission than UDP [2]. TCP gains popularity for the

ability to secure networks, while UDP loses popularity for the inability to maintain reliability of

delivery [2].

2.2 VPN

A virtual private network (VPN) extends a private network over a public network [2]. Encryption

of data and authorization of users allows the network to send and receive data across the Internet

with security and reliability [2].

2.3 .data File Extension and Byte Strings

The .data file extension contains machine-readable data [4]. These files store memory dumps,

text-based lists, binary data containers or data for payloads in a program [4]. Similar to strings,

byte strings exist as a sequence of bytes instead of characters [5]. Often, .data files contain byte

strings or contain data able to transform into a byte string format [5].

2.4 Applications

Networks allow communication across the world, as well as the ability to share resources [6].

The market for management and security of network services around the nation displays a

growth of 6% in the next 8 years [6].

UNCLASSIFIED 4

UNCLASSIFIED

The number of cyberattacks on corporate networks increased 50% in 2021 [7]. This demonstrates

the need to design networks and protocols which allow for confidentiality, integrity, and

availability of data [7]. In 2020, Russian hackers attacked email networks in the Department of

Justice and Homeland of Security after their breach of the SolarWinds company [8]. Our

challenge problem utilizes UDP and attempts to build communication over an unreliable network

with the delivery of a file uncorrupted by the transmission. Our solution describes how

organizations and individuals may harden their unreliable networks to ensure the delivery of

messages communicated across their networks.

3. Assumptions

The previous chapter details the background to our challenge problem. In this chapter, we list the

assumptions we make to establish our solution.

For the completion of our solution, we assume access to the team VM and VPN, as Mr. Allen

and the graduate assistants (GAs) determine which users may access these tools. Due to the

randomness of chance associated with packet delivery, we assume delivery occurs without a time

constraint. We also assume the size of the files transferred across the network fall within the

memory capabilities of the client’s and server’s systems. We also make an assumption about the

availability and openness of ports 2001 and 2002 used in our solution.

UNCLASSIFIED 5

UNCLASSIFIED

4. Tools and Techniques

The previous chapter describes the assumptions made in our challenge problem. In this chapter

we detail the tools and techniques behind our solution.

4.1 VICEROY VPN

Graduate assistants (GAs) set up the VICEROY VPNs with the .conf files “GI-viceroy-xx.conf”

and “viceroy-xx.conf”. The “x’s” map to each intern. The VPN connects to the VICEROY

server.

4.2 Visual Studio Code

Released in 2016, Visual Studio (VS) Code exists as a code editor used to build and debug

programs written in a variety of languages [9]. VS Code thrives as a platform for the

development of code in macOS, Linux, and Windows [9].

4.3 Python 3.0

The 3rd version of the Python language, Python 3.0 works in tandem with Python 2.0 and

maintains the language’s ability to write scripts at high-level and with object-orientation [10].

The command python3 in a terminal runs a script for this version of Python [10].

4.4 Python Functionalities

Here we discuss the libraries, methods, and data formats we utilize in Python and describe their

functions.

UNCLASSIFIED 6

UNCLASSIFIED

4.4.1 to_bytes() and from_bytes()

The to_bytes() function takes an integer and returns an array of bytes [11]. The from_bytes()

function takes an array of bytes and returns an integer [11].

4.4.2 set and list

The data type of set in Python exists to store collections of data [12]. The data inside sets occur

unordered, unchangeable, and unindexed [12]. The list data structure contains the functions

add(), which adds elements to a list, and sort(), which sorts the elements based on parameters

specified by the programmer [13]. A set passed into a list with the add() function may become

sorted with the sort() function [13].

4.4.3 socket

The socket library contains the methods bind(), close(), sendto(), recvfrom(), settimeout(), and

contains exceptions built in to provide error messages [14]. The library creates socket objects

and constants, such as socket.AF_INET and socket.SOCK_DGRAM for UDP implementation

[14]. The bind() function binds a socket object to an address and port, while the close() function

closes a socket [14]. The sendto() function sends data to a socket at an address specified, while

recvfrom() receives data from a socket on a port and address specified [14]. The settimeout()

function disables the socket’s ability to receive packets if the time passed since transmission

exceeds the limit inside the parentheses [14].

UNCLASSIFIED 7

UNCLASSIFIED

4.4.4 open(), read(), and write()

These methods built into Python handle files imported to a script [15]. The open() method opens

the file, the read() method reads a file line-by-line, and the write() method creates a file [15].

4.5 Ubuntu VICEROY Virtual Machine

Virtual Box, a platform used to support a variety of operating systems (OS) in a virtual

environment, hosts the Ubuntu VICEROY virtual machine (VM) [16]. A VM exists as software

which mimics the abilities of a physical computer [16]. The VICEROY VM provides the Ubuntu

OS in order to run Linux.

4.6 Vim

Developed by Sven Guckes as an editor for text files, Vim allows for the creation and ability to

change files from the terminal [17]. The command vi in the terminal opens a file and permits a

user to read, edit, or delete the file [17].

5. Problem Solution

The previous chapter catalogs the tools implemented. In this chapter, we explain how we utilize

the Ubuntu VICEROY VM to create a client and server for transportation of packets over an

unreliable network.

UNCLASSIFIED 8

UNCLASSIFIED

5.1 Packet Set Up

We format our packets to send over the network with variables we call “index” and “temp”.

Figure 1 illustrates index as the integer which identifies the packet and tells the order of the

packet in the file. The variable “temp” represents the data of the packet. We format our packets

to contain 1024 bytes.

Figure 1. Packet Format

5.2 VPN and VM Set up

Inside the Ubuntu VICEROY VM, we use the terminal to access the “wireguard” folder in our

VICEROY directory and edit the “GI-viceroy-27.conf” and “viceroy-27.conf” files to configure

our VPN. We enter the IP address 10.65.97.0/24 under the “AllowedIPs” section. We enter the

command wg-quick up <VPN name> to access the VPN. To connect to the team VM, we enter

the command ssh ubuntu@viceroy-01.vcry, along with the password “viceroy”.

5.3 Download “example.data”

From Mr. Allen’s Gitlab repository, we download the “example.data” file, as shown in Figure 2.

This file contains bytes with characters not recognized as valid so we open with “write in binary”

mode. We download the 50kb file to our local machines.

UNCLASSIFIED 9

UNCLASSIFIED

Figure 2. “example.data” file

5.4 Client Build

To create our “client.py” script, we read in the “example.data”. With open() and read(), we create

the variable “teststuff”. This variable holds the contents of “example.data” in one byte string.

We then create our packets and sockets to send to the server, along with a timeout feature.

5.4.1 Formation of Packets

A while loop splits “teststuff” into byte strings of size 1020 bytes. Another loop for iteration

tacks a 4 byte index onto the front with the to_bytes() function and appends the 1020 bytes to the

end to create a 1024 byte packet.

5.4.2 Socket Creation and Packet Transmission

We use the server’s IP address to create and bind two sockets, one meant to receive on port 2001

and another meant to send packets on port 2002. In a while loop, we send the quantity of packets

to the server until we get an acknowledgement of “ACK”. Here, we send 50 packets, one with

fewer bytes than the others. The second while loop transmits the packets until the server sends

back an “ACK”. This “ACK” closes the sockets and ports for termination of the program.

UNCLASSIFIED 10

UNCLASSIFIED

5.4.3 Timeouts and Exceptions

We code the client to pause with settimeout() when the line holds silence for 0.1 seconds. This

prevents a stall in the program. In the case of packets lost, we display “timed out” on the

terminal. We employ exceptions whenever an error occurs in the configuration of the network or

transmission of packets. An exception gives us the line of code the error occurred on and ensures

the sockets close to enable use of the program in the future. Figure 3 illustrates timeout and

acknowledgement in green and the exception code in blue.

Figure 3. Timeout and Acknowledgement in Terminal

5.5 Server Build

In VS Code inside the VM, we create a python file named “server.py”. We create two sockets,

one to receive packets on port 2002 and one to send packets on port 2001. We use bind() to bind

the socket which receives packets to the IP address of the machine which hosts the server. The

socket we use to send data we allow to bind to the client without bind(). In order to edit our code

from the terminal, we use Vim with the command vim <file name>.

UNCLASSIFIED 11

UNCLASSIFIED

5.5.1 sortsets()

We create a function called sortsets() with the sort library, as shown in Figure 4. This function

takes our packet’s index and data as an element and sorts them into a list. The list maintains the

packets in the order found in “example.data”.

Figure 4. sortsets() function

5.5.2 handle_client()

We write a function called handle_client() with two while loops, which we use for iteration. The

function also includes the ability to set a timeout and write data to a file.

5.5.2.1 Number of Packets

The first while loop receives an integer from the client that specifies the number of packets. We

use from_bytes() to convert this integer into 4 bytes. To compensate for the loss of packets, we

continue to receive transmissions with recvfrom() until we receive the integer. Once received, we

use sendto() to send “ACK” back to the client.

5.5.2.2 Packets Added to a List

The second while loop receives packets and places the first 4 bytes made from from_bytes() into

the “index” variable. The loop sets the packet’s data to the “temp” variable and places both into a

set with the add() function. The loop continues until the number of packets received matches the

integer for length we received in the first while loop. We send an “ACK” back to the client.

UNCLASSIFIED 12

UNCLASSIFIED

5.5.2.3 Set a Timeout

We employ the settimeout() function with a limit of 0.01 seconds to make the server pause the

receive function until the client sends another packet. As long as the server takes less than 20

timeouts, we receive and send acknowledgements of “ACK” back to the client.

5.5.2.4 “finaldata.data”

With the packets received and ordered in our list, we take the packets without their index and

store them as “finaldata.data” with the open() and write() commands. To compensate for the

characters not valid in the “example.data” file, we use “wb” for “write in binary”, as shown at

the bottom of Figure 5 in red.

Figure 5. “server.py” and “finaldata.data” creation

5.6 Tests and Finalization

To ensure our code compiled and allowed us to deliver “example.data” between client and server,

we tested the python scripts over a reliable network. The basis for this test used TCP as a model

to mimic reliable delivery of packets. We used the IP addresses associated with the

GI-viceroy-27 and viceroy-27 VPN configurations.

UNCLASSIFIED 13

UNCLASSIFIED

We then moved our programs to the virtual network on ubuntu@viceroy-01.vcry and sent packets

through the 10.65.97.0/24 interface, which Mr. Allen designed as unreliable [18]. Figure 6 shows

execution of “server.py” in the team VM’s terminal and the directory’s contents. The ls command

displays “finaldata.data” as our deliverable.

Figure 6. Delivery of “finaldata.data”

6. Risk Assessment

The previous chapter lays out the steps taken to deliver a file over a network which contains the

risk for packet loss. In this chapter, we review the assumptions and limitations of the problem’s

solution.

For our solution, we assume access to the team VM and VPN. Access to these tools limits our

solution to a network defined by the standards built into the Ubuntu VICEROY VM, as well as

the configuration settings predetermined by Mr. Allen.

We assume delivery of our file occurs without time constraints. We must revisit how to handle

packets and their retransmission if the network requires speed.

We also assume the system allows transfer of our file size. Changes to the size of the file

transported must exist in systems whose memory capabilities interfere with delivery.

UNCLASSIFIED 14

UNCLASSIFIED

We make an assumption about the availability and openness of ports 2001 and 2002. Limitations

arise if these ports become unavailable, thus we must sift through ports to find alternatives.

An oversight includes the ability for an attacker to transmit packets across our connection if they

obtain knowledge of our ports, transmission times, and IP addresses. Replication of our solution

manifests a chance to also include security standards and the application of user authentication,

firewalls, and privileges.

UNCLASSIFIED 15

UNCLASSIFIED

References

[1] “Computer Network Terminology: 7 Essential Terms,” Ohio University, Jun. 05, 2018.
https://onlinemasters.ohio.edu/blog/computer-network-terminology/ [Accessed:
23-Jun-2022].

[2] “Transport Protocols,” www.cl.cam.ac.uk.
https://www.cl.cam.ac.uk/~jac22/books/www/book/node21.html [Accessed:
23-Jun-2022].

[3] “Socket in Computer Network,” GeeksforGeeks, May 09, 2020.
https://www.geeksforgeeks.org/socket-in-computer-network/[Accessed: 23-Jun-2022].

[4] “DATA File Extension - What is it and how to open DATA format - Review,”
www.filetypeadvisor.com. https://www.filetypeadvisor.com/extension/data [Accessed:
23-Jun-2022].

[5] “3.5 Bytes and Byte Strings,” cs.brown.edu.
https://cs.brown.edu/courses/cs173/2008/Manual/guide/bytestrings.html [Accessed:
23-Jun-2022].

[6] T. B. Insights, “Managed Network Services Market Size Worth $101.54 Billion by 2030:
The Brainy Insights,” www.prnewswire.com.
https://www.prnewswire.com/news-releases/managed-network-services-market-size-wort
h-101-54-billion-by-2030-the-brainy-insights-301487277.html [Accessed: 23-Jun-2022].

[7] “Cyber attacks on corporate networks increased 50% in 2021,” IT PRO.
https://www.itpro.co.uk/security/cyber-attacks/361944/cyber-attacks-on-corporate-networ
ks-increased-50-in-2021 [Accessed: 23-Jun-2022].

[8] D. Temple-Raston, “A ‘Worst Nightmare’ Cyberattack: The Untold Story Of The
SolarWinds Hack,” NPR, Apr. 16, 2021.
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-st
ory-of-the-solarwinds-hack [Accessed: 23-Jun-2022].

[9] Microsoft, “Visual Studio Code,” Visualstudio.com, Apr. 14, 2016.
https://code.visualstudio.com/docs/editor/whyvscode [Accessed: 23-Jun-2022].

[10] Python Software Foundation, “What is Python? Executive Summary,” Python.org, 2019.
https://www.python.org/doc/essays/blurb/ [Accessed: 23-Jun-2022].

[11] “Built-in Types — Python 3.8.1rc1 documentation,” Python.org, 2019.
https://docs.python.org/3/library/stdtypes.html [Accessed: 23-Jun-2022].

[12] “Python Sets,” W3schools.com, 2020.
https://www.w3schools.com/python/python_sets.asp [Accessed: 23-Jun-2022].

UNCLASSIFIED 16

https://onlinemasters.ohio.edu/blog/computer-network-terminology/
https://www.itpro.co.uk/security/cyber-attacks/361944/cyber-attacks-on-corporate-networks-increased-50-in-2021
https://www.itpro.co.uk/security/cyber-attacks/361944/cyber-attacks-on-corporate-networks-increased-50-in-2021
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://code.visualstudio.com/docs/editor/whyvscode
https://www.python.org/doc/essays/blurb/
https://docs.python.org/3/library/stdtypes.html
https://www.w3schools.com/python/python_sets.asp

UNCLASSIFIED

[13] “5. Data Structures — Python 3.8.3 documentation,” docs.python.org.
https://docs.python.org/3/tutorial/datastructures.html [Accessed: 23-Jun-2022].

[14] “socket — Low-level networking interface — Python 3.8.1 documentation,” Python.org,
2020. https://docs.python.org/3/library/socket.html [Accessed: 23-Jun-2022].

[15] “Python File Methods,” www.w3schools.com.
https://www.w3schools.com/python/python_ref_file.asp [Accessed: 23-Jun-2022].

[16] “Downloads – Oracle VM VirtualBox,” Virtualbox.org, 2019.
https://www.virtualbox.org/wiki/Downloads [Accessed: 23-Jun-2022].

[17] “welcome home : vim online,” www.vim.org. https://www.vim.org/ [Accessed:
23-Jun-2022].

[18] S. Allen, “Introduction to Networking,” in VICEROY Lecture Series, 18-Jul-2022.

UNCLASSIFIED 17

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/library/socket.html
https://www.virtualbox.org/wiki/Downloads
https://www.vim.org/

